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ABSTRACT

In this paper we introduce a novel, simple, andcieffit method for human action recognition basedaon
multiphase representation of human motion. An actsoconsidered as a finite state machine wherb state
represents a primitive motion called motion phadach is simply a sequence of poses with predefosmdmon
features. Spatial-temporal and postural featureedanced in previous work are redefined by usinly @D joint
positions for features extraction and are extertgethvolving the relative movement of the body exftectors
as new features. We developed a framework for ninged given motion in the proposed motion model,
whereupon we used this framework to create a maatelbase of 25 different actions. Using this databae
conducted a number of experiments on data obtdimed several sources as well as on distorted déia.
results showed that the presented method has bahacy and efficiency. Additionally, it can worklme and
online in real time, and can be easily adaptedddkwn 2D data.
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1. INTRODUCTION reduce the high dimensionality of motion capture

data without semantic lost. Additionally, some othe
works such as [LiuO6a] and [Zhalla] could capture
the reusability of it is very important. Howevehjs meaningful human motion with a reduced marker set.

reusability demands that the motion capture data is/nSPired by such works, we develop a motion model

good segmented and annotated. The segmentatiortlhadt df(fepends on(;y on th% movement |Off the actor's
into natural motion phases increases the reusagbilit end-effectors and some basic postural features. We

however, the basis for this segmentation is the ex_teﬂd the fegtures introduced _in [Sall5a] so_ahgt_
recognition of motion phases. Moreover, motion primitive motion can be described automatically in

capture data is used in medicine for the analysis a high-level terms. In general_ an action consists of
examination of joint movement and rehabilitation several phases each of which is represented by a

procedures. These fields continuously produce largeSUPset of these features and characteristics. Wseng
stores of data so that it is hard and tedious ttiexe frameyvork Of. phase_s and features a person W'th. no
a particular motion manually. Therefore, many experience with motion capture data is able tondefi
methods have been developed for automatic search’ dg&gn movements at will and use them In any
and retrieval in these stores. Of late, marker-less@PPlication area to retrieve and classify motiawsnf
motion capture data has achieved significant motion repositories or to recognize ongoing motions

improvement in accuracy, which enables it to beluse ©nline in real time.

in control and surveillance systems, as well ahan ~ The contribution of the proposed method is threkfol
human-robot interaction field. This demands (1) specification of high-level features of human
instantaneous and precise action recognition, whichmotion that enables (2) multiphase representatfon o
is what our presented method can do. Many workshuman action and (3) utilizing this framework for
such as [Jin07a] and [BarO4a] successfully could efficient and high-accuracy classification of matio

Motion capture data is the basis for a realistic
animation, but it is expensive to produce, themfor
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related works is given, and then some terms andusing SVD and then translated them into a one-
notations used in our work are introduced. Aftetth  dimensional sequential representation through a
the proposed features are described in Section 4semantic  Gaussian  Mixture  Models  with
while the developed motion model is introduced in Expectation-Maximization algorithm. These could
Section 5. In Section 6 the classification alganitls reduce the dimensions of human motion data while
presented, and then in Section 7 some conductednaintaining semantically important features. M
experiments are described and their results disduss Zhang and A Sawchuk [Zhal2a] introduced a

Finally, the work is concluded in Section 8. framework for human motion modelling and
recognition based on a bag of features. They
2. RELATED WORK modelled human activities through histograms of

Action recognition from motion capture data has primitive symbols on physical features using k-

received a lot of attention in the last decade. means clustering and soft weighting. Unlike our
Nowadays there is a wide range of methods for hioposed method, most of the above-mentioned
classification of motion capture data. These meshod methods are unable to separate two consecutive

depending on whether the whole data should beyransitions between two motions are not recognized
processed before a classification result can bengiv 55 transition but merged with the neighbour motions
or not. From anothgr_pomt_of view, the clgssmloat Moreover, in some methods the learning process by
methods can be divided into the following groups cjassification is not simple, while our method is

based on the nature of the features used to reyprese simple, easy to implement, efficient, and does not
human motion as well as the field in which the used pgeqg any training phase.

algorithms originated: 3 PRELIMINARIES

Description-Based _ We describe a pose of the human body as a set of
Methods of this category use annotated motion annotated 3D points that correspond to the body
templates and high-level semantic features fooacti joints. Thus, the human body pose is determined by
recognition. The work of J Baumann et al. [Baul4a] the global 3D positions of these joints additiotel

is an example of these approaches, where a motioRpe global orientation of the body. The proposed
capture database is annotated with actions oféster ethod needs a minimum set of joidtsnamely, the

in an offline phase, and then used in the onliresph ankles, knees, hips, chest, head, wrists, as wedl a

to search for motion segments that are similar to ;g joint at the pelvis called 'root’. In thigork,
annotated actions in the motion database. Leightley\ye refer to ankles and wrists as feet and hands

et al. [Leild4a] used Exponential Map EMP and k- respectively. A pose at timeis described byt =
means clustering to model human actions. For each(qt pt,pt, .., pt), whereqt is the global orientation
) ) LR ) nts

action class they trans_form each pose of agfhe body ang! is the 3D global position of the
representative sequence into EMP form then they. . . . .
joint j, wheren is the number of used joints. The

used k-means clustering to extract a small number o . : T

. lobal body orientation at timeis given by three
exemplars that represent the action. Then they useacg)rthogonal vectorgt, st, and k¢ representing the
Dynamic Time Warping and Template Matching to normal vectors of the frontal, sagittal, and traeér

recogn.|ze actions 'from motion capture data streams. . dy planes respectively. We denote the single
Machine Learning position coordinates of joirjtat timet asxf, y/ and

Machine learning techniques are widely used 1o ;frespectively whereyf is the vertical coordinate.

classify 2D and 3D human motion. Cho and Chen yye refer to the vector that goes from jairt jointb
[Chol3a] generated features for each motion frame; timet asv , =t — pt, and the motion direction
a, a

based on the relative positions of joints, temporal of joint j at timet asd]-f _ pj- _ pf‘l- Additionally,

differences, and normalized trajectories of motion. : . . . . .
They then used them in training deep neural we define the m_otlon magnitude of jojrat timet in
the direction % as

networks that they later used to classify motion ) . . .
capture data. Coppola et al. [Cop15a] extended thefellowing d;,, = [|d;]|cos («(df,v)),  wherev €
3D Qualitative Trajectory Calculus (QTC3D) and {f®s%h‘}, and we refer to the algebraic sum
used them to model human actions. Then theyX{=sd;, as the accumulated motion magnitude of
learned HMM to recognise human actions. joint j over the time intervalT =[s,e] in the

Statistics-Based directionv.

Statistical techniques such as Gaussian-Mixture-4. FEATURE DESCRIPTION

Models, Histograms and Space-Time Correlation are The main idea of the proposed method is based on a
used here to model and recognize human motion. Yset of features that was inspired by the way inctvhi
Jin and B Prabhakaran [JinO7a] quantized humanpeople in general and kinesiologists in particular
motion data by extracting spatial-temporal features analyse and evaluate human motion. The method also



seeks to analyse the most important factors inplanes we define the directions of the joint
deciding on the motion class. We extend the movements relative to the body's axes as shown in
taxonomy tree of human motion introduced in Table 1.

[Sall5a] by adding motion directions of the end- : X X
effectors in the main body planes. The extendeel tre | Body Axis frontal vertical | sagitta
shown in Fig. 1 now consists of nine levels that Positive ; 4 4 oft
reflect the importance of each group and the aiati Motion orwar upwar e
among features where the features in the firstlleve Negative | packward | d 9 oht
have the highest importance. We call each completd ' y15iion ackwar ownwar ng

path in this tree a 'pose state', which can beritest
as a complete set of the defined features. Eaamgiv
pose is assigned a pose state by taking a previous .

pose into account. In the following, we introduce a 4-1.3 Motion Space .

detailed description of each of the features. In Although the human body can move in many
[Sall5a] the used features are calculated using bot different ways, there are actually two major kinds
joint angles and 3D joint positions. However, we us r_novements. These are _Iocomotlve, translator or
here only 3D joint positions for calculating the linear, and non-locomotive, rotary, or angular

Table 1: Defined motion directions relative to
main body’s axes

introduced features. [HamO2a, GreO5a]. If the whole body moves from
) one place to another, then the movement is
Spatial-Temporal Features locomotive; otherwise, it is considered as non-

In this section we introduce features that are |ocomotive. A given pose is classified as locometiv
generated by changing the joint positions over time if the root and both feet move, relative to the
thereby denoting it as spatial-temporal featuré®yT  previous pose, in the same direction (3), or the ro
are introduced in the following in the order in wii  and at least one foot move in the same direction (4
they are computed. and 5), while the other foot is fixed, and the
4.1.1 Motion Existence accumulated magnitude of the root motion in the
First the existence of motion is checked. A pose isconsidered direction is greater than a certain
classified as dynamic if there is at least onetjiat  threshold equal to the tibia length.

has moved a significant distance on at least one(||dt,oll > ) a

coordinate axis (1), otherwise it is classifiedsttic. Udtoodl > € Qldull > £) A

(dfoot - dltfoot > 0)A(dfoot - dlt*foot > 0) 3)
The threshold is a small real value representing the (ldto ol > €) a
maximal noise value in the used data. Assuming ‘" ro°
there is a clip oh static poses that can be recorded (ldirocll > €) A (ldigooell < €) A
during the system setup; the threshelds then the (oot * d5or > 0) 4)
maximal displacement that a joint has achievedalon X
any of the coordinate axes between two subsequenﬂldroot” > e)n

Jjefacexyzl|cf—¢ | >e

poses over the whole clip (2). Idfooell < €) A (ldo0ell > €) A
e = maxyjc(|cf — ¢/ ') forallt € [2,n], allj € (Aot * dipoor > 0) (5)
Jandallc € {x,y,z}. (2)  wheree is the noise threshold defined in (2).

4.1.2 Motion Directions Postural Features

Shecondly_, tgedmotlions of thde en_db-e;fegorsdin thi An important factor for classifying human motion is
three main body planes are described. Based on thg,o change in the main body posture. We utilize thi

observation that almost all human actions are observation and use the following major and
performed by displacing the body end-effectors, ., ashonding minor postures as features for the
namely the hands, the feet, and the head/torso, Werecognition of human actions

use the motion direction of these body parts ak-hig )
level features such as left foot moves forwardamp, 4.1.4 Standing

right arm moves left down fast. From a kinesiolagic  In general, 'standing’ is a major posture where the
perspective, the movements of body parts occurbody maintains an upright position supported by the
mainly in three anatomical planes, namely the feet. The presented approach restricts the upright
frontal, sagittal, and traversal planes [HamO02a, constraint to the lower body. Therefore, a pose is
Gre05a). Based on this division of the body inteéh
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Figure 1: Taxonomy tree of human motion. Double cicles allow the path to return to the first previous
double circle, whereby it is not allowed to take th same path segment again.

considered as 'standing' if at least one leg isnel¢d
and has a certain maximum inclination (6). We
consider a leg as extended if the distance bettveen
foot and hip is greater than which is equal to one
and a half of the femur length. The maximum
inclination used by our experimentsais= 45°.

(”vlfoot,lhip” > 7]) A
(2(vigoot,inip OY) S @)) v
(”vaOOt,Thip” > 77) A

(L(Vrfoot,rhip' OY) = a)) (6)

Standing can also have one of the following three
minor postures:

1. If the torso stays upright, i.e. it has an inclioat
smaller than threshol@ (7), then the pose is
considered as 'standing upright'. We uged

30°.

L(Uraot,cheast' OY) < B (7)
2. Otherwise as 'standing bent' (8):
L(vroot,cheast: OY) > ﬁ (8)

3. |If the body is not supported only by the feet,

then the pose is considered as 'standing leaned'

SupposeS is the set of support body parts, then
'standing leaned' is recognized whemontains
at least one part except the feef\

{Plroots Ptroor} = @.  This  minor posture,
however, is in our case not recognizable,
because motion capture data does not contain
any information about the environment.

4.1.5 Sitting

The 'sitting' posture is a major posture in whihb t
body is supported mainly by the buttocks rathentha
the feet, that implies that the projection of thawvity
centre of the body lies outside the support bagbeof
body formed through the feet. Additionally, thestor
is not horizontal. Based on the height of the biptj

it is decided whether the pose is sitting on arecb)j
or on the floor as minor postures. No constraimgs a
put on the legs because there are many varianie of
sitting posture according to the position of thgsle
Legs can be vertical, crossed, or on each other.

4.1.6 Kneeling

'Kneeling' is also a major body posture in which at
least one knee touches the ground and the rootheig
is greater than half of the femur length, which is
denoted asy in (9). If only one knee fulfils these
criteria, then kneeling is called asymmetric;
otherwise, it is symmetric kneeling.

.((YItknee = yO) v (Yrtknee = 3’0))

A ((y‘foot - yo) > 5) (9)



Given that the ground height can be greater tham ze 4.1.10 Transition
(stairs case), we denoted the ground heigly as The transitions between the above-mentioned main
4.1.7 Squatting postures of the human body are considered here. If

'Squatting' is a major human body posture in which the pose cannot be classified as one of the above-

least one foot touches the ground but not the kneeMentioned major or minor human body postures,

and the vertical distance between the corresponding"€n it is considered a transition posture. The

hip and foot is smaller than half of the femur léng previous and next m"’!ior postures de'Fe_rmi_ne the name
(10). Additionally, the torso must not be horizdnta ©f the transition, i.e. the classification of a

Squatting is symmetric when both the knees are benttransmog_al posture is dependent OT thhe two
it is asymmetric when only one knee is bent. surrounding main postures. For example, the pose
that corresponds to the transitional phase between

(oot = ¥0) A Olnip < ) A Wlinee > ¥0)) v 'sitting' and 'standing’ will be classified as rstag
(oot = Y0) A Winip < 8) A Dfrnee >¥o)) (10) P
4.1.8 Lying 5. MULTIPHASE REPRESENTATION

'Lying' is a major posture in which the body isan OF MOTION_ _ o )
horizontal or resting position supported along its ANy human activity can be generally divided into a

length. In the proposed approach, this definition i Sequence of simple motions called ‘phases’. This
restricted to the torso, i.e. the torso should hawe division makes the action classification easier and

inclination greater  than a  threshoid more robust. In the kinesiological analysis of hama

A(v © ehoast OY) >y (11), which we set &10° in motion, one tries to divide the considered activity
root,cheast’ ! .

the conducted experiments. If at least one hipdies into three phases—preparatory phase, power phase,
the floor, then the pose is classified as lyingtios and follow-through phase [Ham09al], or preparation

- ; phase, action phase, and recovery phase [Bar07a].
ground (12)otherwise on an object. Here each phase can be further divided into sub-

(}’fhip o) v (yrthip ~ ¥o) (12) phases so that each sub-phase consists only of some
If the two hip joints have approximately the same basic joint movements in the directions introduged

height (13) and the normal of the frontal planenf®i Section 4. We use, however, a c_er;ain _definition of
down (14), then the pose is lying on the bellyth the motion phase and do not dlstlngl_nsh betwee_zn
mentioned normal points up (15) and the two hip POWer phase and other phases. We define the motion

joints have approximately the same height, then theP@se as a sequence of poses with a common set of
pose is called lying on the back. features defined above in Section 4. Table 2

summarizes the feature set and the range of vafues
[Yinip = Yenip | < Vrnip.nip||/2 (13)  each feature, where the symbsl stands for the
£(ft,07) ~ 180° j14 Cartesian product operation, and the feature value

'undefined' denotes that this feature is not ingurt
2(ft,0Y) = 0° (15)

in the considered phase, i.e. it can be ignored.
If the difference between the heights of both thes h
is greater than half of the distance between the tw

Featur: | Values

2 oo . Motion ; ; ;
hip joints (16), then the pose is lying sideways. Exister static, dynamic, undefined
[Yinip = Yinip | 2 [Vrnip,inip|| /2 (16) '\SAO“O” locomotive, non-locomotive, undefined
pac

4.1.9 Four-Supported

i standing, sitting, kneeling, squatting,
In this rare major posture, the hands and the feef Malor g g 9. 59 9

Posture | 1Ying, four-supported, transition,

contact the ground but not the rc@fioot = undefine
Y0) A Voot = ¥0) A Wihana = ¥0) A (inana = standing | UPright, bent, leaned,
Vo)A Voot > Vo ). If the belly faces the ground undefine
(14), then the position is called ‘forward four- sitting on object, on floor,
supported', or else the back faces the groundgis) undefine .
the position is called 'backward four-supported'. . kneeling | Symmetric, asymmetric,
Another variant of this posture is when at least Minor undefinet

_ posture is when at least on | 5 ' _ ( _
upper limb and one lower limb contact the ground at squatting | SYmmetric, asymmetric,
the same time (17). This variant allows more undefine
movements to be performed than the first variant. {c_)n belly, on bQCk,

lying S|deway., undefined }
((Yffoot ~ }’o) v (Yrtfoot ~ yo)) A x{on object, on floor,
undefinec}

((ylthand ~ Y0) vV Wrnana = 3’0)) (17)



four- backwards, forwards, Another relative complex example is the jumping

supporte | undefinet action. Jumping can be divided into four phases. In

undefinet the first phase the feet stay fixed while the root
Frontal {forwards, backwards, fixed, moves down. In the second phase the whole body
Motion undefinediu M x S moves up and forwards, while it goes on forward in
Vertical {up, down, fixed, undefinedp M x S the third phase but down. In the last phase the fee
Motion are fixed while the root moves up and forwards.
f/li%ilgﬁl {left, right, fixed, undefinedju M x § 6. ACTION RECOGNITION

Actions to be recognized should be manually
modelled and saved in a model database using the
developed framework. For each action in the action
model database, a finite state machine FSM is edeat
automatically (Fig. 2).

Table 2: Summary of introduced features and
their possible values, where M = {short, mean,
long, undefined} and S = {slow, normal, fast,
undefined}

This definition of the wide range of high-level
features allows the description of the most common
human activities in a high language, enabling a
comfortable retrieval system. Often, an action that
consists of several phases can only be performed
starting from a certain phase. In these cases the
motion description involves the order of phases. On
the other side there are some actions that can be
started in more the one phase, such as the kicking
action, which consists of three phases and can be Figure 2: Finite state machine representing the
started in the first or second phase, where irfitee recognition process of a defined action, where
phase the used leg moves backwards to give the'n’ means that the next phase is matched and the
strike more power, then it moves forward long fast current phase can be ended; 'a’ means the
the second phase and then moves backwards down to current phase is matched; 'f' implies failed to
the rest position in the last phase. Here the finstse match either the current phase or the next one;
is optional because kicking can be performed withou 'r' means the end phase ended successfully and
this phase. Table 3 shows the detailed definitibn o the motion is recognized; 's' means return to the
kicking using the right leg without the optional start phase and start again.

phase. Suppose that an action model consists rof
Featur Phase Phase phases,,S,, ..., S,, whereS,is the start phase and
Motion dynamic dynamic S, is the end phase, then the corresponding FSM is
Existenci defined as following4 = (%, S, 5o, 8, F), whereX is
Motion Spac nor-locomotive | nor-locomotive the input alphabet and consists of all possibleepos
Main Postur standiny standiny states; S = {S;,S;, ..., S} is the states set and it
Minor Postur: | undefinet undefine( consists of the action phases whereby each phase is
root Frontal- fixed-fixed- fixed-fixed- extended to have the following attributes: (1) tstar
Vertical- fixed fixed timer, (2) end timer and (3) an activation flag, is
Sagittal Motiot the initial phasesd is the transition function and it
torso Frontal- | undefined- undefined- will be defined later in Fig. 3. F is the set ofdl
Vertical- undefined- undefined- states and it consists here of the extended ensepha
Sagittal Motiot | undefinet undefinet The input data in each frame consists of the global
Ifoot Frontal- | fixed-fixed- fixed-fixed- positions of the used joints as well as the gldioaly
Vertical- fixed fixed orientation. The motion features are computed using

Sagittal Motiot

rfoot Frontal-
Vertical-

forward long
fast-up mean

backward long
fast-down mean

this information and then the FSM for each act®n i
updated using the computed current pose state as
shown in Fig. 2 and Fig. 3. At the beginning all

Sagittal Motior | fasi-fixed fastfixed created FSMs are considered to be in their initial
Ihand Frontal- | undefined- undefined- phase. When a new pose is available, the poseistate
Vertical- undefined- undefined- computed and given to each FSM to update its status
Sagittal Motiot | undefine undefine as following: if the pose state is compatible vittie
rhand Frontal- | undefined- undefined- current FSM phase i.e. the phase is matched, treen t
Vertical- undefined- undefined- phase is retained and the related action is coreside
Sagittal Motior | undefinet undefinet

Table 3: modeling the motion class "KickR" using
the proposed motion model.

active. Otherwise, if the current phase is not madc
and it was active in the previous frame, then the



phase is considered to be achieved and can be endeitland a manually segmented action of the same type
if the accumulated motion magnitude and motion is bigger than half the length of the manual action
speed of each required phase feature are within theNe measured also the segmentation error as follows:
desired range and, in this case, the FSM is aggpeéga the segmentation error is zero if the difference

to the next phase. Otherwise, the action is caextell
and the FSM is returned to its start phase. IBit i
assumed thaf; is the pose state of the pdsee. S;

is a complete set of the defined features or a
complete path in the taxonomy tree, aylis the
feature set of the current phaggof the FSM for the
actionM’, then the global recognition algorithm of
the actionM' at the timet can be stated as follows:

if S, € S; then
if the current action phasg is active
then
| setendtimof S, o = ¢t.
else

[N

cefstart timeof S, T t.
raise the activation flag ¢f,, i.e.
makeS,, active.

elseif S, isactive and can be ende¢hen
if theS, is theenc phasethen
action M is recognizec

return to the first phase and reset the
activation flag of all phas.

else move to the next pha:

elsereturn to the first phase and reset the
activation flag of all phas.

Figure 3: Transition function of the action FSM.
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The proposed approach can provide information
about the ongoing activity before it is completed,
which is an important issue for some application

between the automatic detected cut and the manually
created cut smaller than ten, otherwise the
segmentation error is equal to this difference minu
ten, where a manual created cut is the mean of all
manual created cuts (in our case two) of the
considered action. The proposed method is able to
recognize some particular information about the
action such as the marching foot while walking and
running, the used hand while punching, or the leg
while kicking. All occurrences of most of the defih
actions are recognized successfully. An excepton i
the activity of walking. This is because sometimes
the first and last strides of running are recogtias
walking. The method failed to match the second
phase in the running motion if the feet are not far
enough from the ground. This is, however, a minor
drawback, because walking and running are similar
motions especially in terms of the first and last
running strides.

areas such as human-robot interaction, because
enables the robot to response quickly and at it ri
time.

7. EXPERIMENTAL RESULTS

We developed a framework for action design and
action classification from different motion capture
databases, namely CMU [Cmul4a], HDMO5
[Mue07a], and locally captured data (at our ingtitu
The used data contains distorted walking data. gJsin
our framework we modelled 25 actions manually as
explained in section 5. The motion clips were first
manually segmented and annotated by two different
persons, and then processed by our system. Table
shows the actions used in our experiments and th
measured evaluation values, where the global
precision is about 96.2% and the global recall isen
than 98.1%. To begin with, we measured the
precision of action recognition as followsrecision

= count of correctly recognized action / count dif a
recognized actionsAnother evaluation value is the
recall, which is the percentage of the count of
correctly recognized actions compared to the count
of ground truth actions An action is considered
correctly recognized if the temporal overlap betwee

Action Class Prec- | Re- | Segmentat
ision | call | ionError
WalkL 094 |0.9¢]|2
WalkR 092 [09¢|1
RunL 09¢ (0910
RunFk 1 09€|0
BoxL 1 0.9€| 11
BoxR 0.9¢ 1 18
KickR 1 1 1C
KneeKickFk 1 1 27
t SideKickF 1 1 23
Jumg 1 1 11
JumpJack 1 1 7
StandUj 1 1 55
SitDowr 1 1 14
Hop2Leg: 1 1 71
HopR 1 1 31
HopL 1 1 2C
SwingArmsSactal | 1 1 11
SwingArmsTraver | 1 1 26
SwingArmsCircula | 1 0.9¢ | 14
Choppingl 1 1 4
ChoppingF 1 1 19
" Fight 1 1 28
DrinkR 1 1 18
Throw 1 1 57
Squa 1 1 32

Table 4: Results of the experiments, where 'L
stands for left and 'R’ for right and it refers to the
active limb during the action.

The classification speed is linear with the numbfer
actions to be recognized. The mean recognitiondspee
for a model database of 25 actions amounted ~1200
fps on a computer running Windows 8 with AMD
A4-4300M APU processor, 2.50GHz and 4.00GB



RAM. If the database were hypothetically extended
to contain 250 actions, then the speed would Fnk t

~120 fps. This means that our method can scale to

large model databases and can still perform well in
real time.

Compared to some other works which were evaluated

using data from the same data sources which we used

,namely the HDMO05 and CMU, the proposed method

[Baulda] Baumann, J., Wessel, R., Kriiger, B. and Weber,
A.. Action Graph: A Versatile Data Structure for
Action Recognition. International Conference on
Computer Graphics Theory and Applications, 2014

[Chol3a] Cho, K. and Chen, X.. Classifying and
Visualizing Motion Capture Sequences using Deep
Neural Networks. arXiv preprint arXiv:1306.3874,
2013

produces better results as shown Table 5. HowevedCmul4al CMU Graphics Lab Motion Capture Database,

this comparison might be unfair because the used
datasets might be slightly different and the classe
and numbers of considered actions are also differen

Action [Chol3 | [Leild | [Zhal2 | Propo-
Clas: al al al se(

All 0.9t 0.949z | 0.927 | 0.9€2
Walk - ~0.97E | 0.923 | 0.935
Rur - ~0.97E | 0.969 | 0.9¢
Hop - ~095 |1 1

Box - ~086 | - 0.98
Squa - ~0.94 - 1

Table 5: Precision of some other works where ,-*
stands for unknown accuracies and ,~* stands for
those read from a diagram picture.

8. CONCLUSION AND FUTURE
WORK

In this paper a set of high-level semantic featares
introduced and employed in a multiphase motion
representation that enables an efficient recognitio
and retrieval of motion capture data with high
accuracy. The introduced features as well as the
multiphase representation of motion are inspired by
kinesiology, and hence the proposed method mimics
the human mind by motion perceiving and analysing
what enables it to perform very well. It can alsorkv
online and offline in real time. The recognizable
motion database can be extended easily and inra sho

time, because our method does not require any

training time. The experiments made on large
databases from different sources, as well as on
distorted data, proved that the proposed method
scales well to other data sources. As future woek w
plan to extend this method so that it can alsostflas
single poses, static clips, and static gestures.
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